USER_TYPE | USERS | |
---|---|---|
1 | a. 1 Transaction | 948787 |
2 | b. 2 - 5 Transactions | 1222834 |
3 | c. 6 - 10 Transactions | 246517 |
4 | d. 11 - 25 Transactions | 82546 |
5 | e. 26 - 50 Transactions | 116453 |
6 | f. > 50 Transactions | 39407 |
Afonso_DiazGrouping users
Updated 5 days ago
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
›
⌄
with
main as (
select
tx_id,
block_timestamp,
f.value['value'] as user
from
aleo.core.fact_transitions
join
lateral flatten(input => inputs) f
where
f.value['value'] ilike 'aleo%'
),
users as (
select
user,
count(distinct tx_id) as transactions
from
main
group by 1
)
select
case
when transactions = 1 then 'a. 1 Transaction'
when transactions <= 5 then 'b. 2 - 5 Transactions'
when transactions <= 10 then 'c. 6 - 10 Transactions'
when transactions <= 25 then 'd. 11 - 25 Transactions'
when transactions <= 50 then 'e. 26 - 50 Transactions'
else 'f. > 50 Transactions'
end as user_type,
count(distinct user) as users
from
users
Last run: 5 days ago
6
197B
12s