SocioCryptocomparison n_sales 1M
Updated 2024-05-29
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
›
⌄
with
nft as (
SELECT
date_trunc('day', block_timestamp) as date,
nft_collection,
tx_id,
nft_id,
buyer
FROM flow.nft.ez_nft_sales
WHERE nft_collection IN ('A.0b2a3299cc857e29.TopShot', 'A.e4cf4bdc1751c65d.AllDay'
,'A.329feb3ab062d289.UFC_NFT', 'A.8b148183c28ff88f.Gaia'
,'A.87ca73a41bb50ad5.Golazos')
AND (date BETWEEN '2023-08-14' AND '2023-09-12'
OR date BETWEEN '2023-07-14' AND '2023-08-12')
),
periods as (
SELECT
CASE WHEN date BETWEEN '2023-08-14' AND '2023-09-12' THEN 'GALXE campaign'
WHEN date BETWEEN '2023-07-14' AND '2023-08-12' THEN 'common'
END AS periods,
CASE WHEN nft_collection = 'A.0b2a3299cc857e29.TopShot' THEN 'NBA TOP SHOT'
WHEN nft_collection = 'A.e4cf4bdc1751c65d.AllDay' THEN 'NFL ALL DAY'
WHEN nft_collection = 'A.329feb3ab062d289.UFC_NFT' THEN 'UFC Strike'
WHEN nft_collection = 'A.8b148183c28ff88f.Gaia' THEN 'Ballerz'
WHEN nft_collection = 'A.87ca73a41bb50ad5.Golazos' THEN 'LaLiga Golazos'
end as title,
count(DISTINCT tx_id) as num_sales
-- count(DISTINCT nft_id) as num_nft_sold,
-- count(DISTINCT buyer) as unique_buyers
FROM nft
GROUP BY 1, 2
),
pivot as (
SELECT *
FROM periods
PIVOT(SUM(num_sales) FOR periods IN ('GALXE campaign', 'common'))
QueryRunArchived: QueryRun has been archived