Updated 2025-05-12
    WITH DailyFees AS (
    SELECT
    DATE_TRUNC('day', block_timestamp) AS transaction_day,
    SUM((gas_used * gas_unit_price) / 1e8) AS daily_fees_in_apt,
    COUNT(DISTINCT TX_HASH) AS daily_transactions
    FROM aptos.core.fact_transactions
    WHERE success = 'true'
    AND block_timestamp >= DATE_TRUNC('month', CURRENT_DATE)
    AND block_timestamp < DATE_TRUNC('month', CURRENT_DATE) + INTERVAL '1 MONTH'
    GROUP BY transaction_day
    ),
    APTPrice AS (
    SELECT
    DATE_TRUNC('day', hour) AS price_day,
    avg(price) AS apt_price
    FROM aptos.price.ez_prices_hourly
    WHERE symbol = 'APT'
    AND hour >= DATE_TRUNC('month', CURRENT_DATE)
    AND hour < DATE_TRUNC('month', CURRENT_DATE) + INTERVAL '1 MONTH'
    GROUP BY price_day
    )
    SELECT
    df.transaction_day,
    df.daily_transactions,
    df.daily_fees_in_apt,
    df.daily_fees_in_apt * ap.apt_price AS daily_fees_in_usd,
    df.daily_fees_in_apt / df.daily_transactions AS avg_fee_per_transaction_in_apt,
    (df.daily_fees_in_apt / df.daily_transactions) * ap.apt_price AS avg_fee_per_transaction_in_usd
    FROM
    DailyFees df
    JOIN
    APTPrice ap
    ON
    df.transaction_day = ap.price_day
    ORDER BY
    df.transaction_day;

    Last run: 12 days ago
    TRANSACTION_DAY
    DAILY_TRANSACTIONS
    DAILY_FEES_IN_APT
    DAILY_FEES_IN_USD
    AVG_FEE_PER_TRANSACTION_IN_APT
    AVG_FEE_PER_TRANSACTION_IN_USD
    1
    2025-05-01 00:00:00.0003904385415.9100682272.0820423120.0001065238360.0005819308391
    2
    2025-05-02 00:00:00.0003667592350.7052591920.4035474070.0000956227570.0005236142802
    3
    2025-05-03 00:00:00.0003129522165.42125878.9382416670.0000528583120.0002808538311
    4
    2025-05-04 00:00:00.0003327192167.439055862.3808995230.0000503244340.0002591918036
    5
    2025-05-05 00:00:00.0003319816177.955492908.3144904170.0000536040230.0002736038674
    6
    2025-05-06 00:00:00.0003452418187.429208901.534490480.0000542892570.0002611313262
    7
    2025-05-07 00:00:00.0003256336168.971324803.036217310.0000518900150.0002466072963
    8
    2025-05-08 00:00:00.0004072669456.2450642316.204108240.0001120260610.0005687189697
    9
    2025-05-09 00:00:00.0003857808416.1012442321.6715660020.0001078595010.0006018110741
    10
    2025-05-10 00:00:00.0003796514331.9210161896.6520055930.0000874278390.0004995772434
    11
    2025-05-11 00:00:00.0003918334414.8552122476.5127593020.0001058754080.000632032071
    12
    2025-05-12 00:00:00.0001469721194.3384111154.9531765730.0001322280970.0007858315805
    12
    1KB
    15s