Date | Daily Users | Weekly Users | DAU_WAU | DAU - WAU Rate (%) | |
---|---|---|---|---|---|
1 | 2024-11-28 00:00:00.000 | 2 | 4 | 50 | 50% |
2 | 2024-11-29 00:00:00.000 | 3 | 4 | 75 | 75% |
3 | 2024-12-01 00:00:00.000 | 1 | 4 | 25 | 25% |
4 | 2024-12-02 00:00:00.000 | 9 | 254 | 3.543307087 | 3.54% |
5 | 2024-12-03 00:00:00.000 | 211 | 254 | 83.070866142 | 83.07% |
6 | 2024-12-04 00:00:00.000 | 27 | 254 | 10.62992126 | 10.63% |
7 | 2024-12-05 00:00:00.000 | 24 | 254 | 9.448818898 | 9.45% |
8 | 2024-12-06 00:00:00.000 | 26 | 254 | 10.236220472 | 10.24% |
9 | 2024-12-07 00:00:00.000 | 8 | 254 | 3.149606299 | 3.15% |
10 | 2024-12-08 00:00:00.000 | 10 | 254 | 3.937007874 | 3.94% |
11 | 2024-12-09 00:00:00.000 | 29 | 107 | 27.102803738 | 27.1% |
12 | 2024-12-10 00:00:00.000 | 31 | 107 | 28.971962617 | 28.97% |
13 | 2024-12-11 00:00:00.000 | 43 | 107 | 40.186915888 | 40.19% |
14 | 2024-12-12 00:00:00.000 | 37 | 107 | 34.579439252 | 34.58% |
15 | 2024-12-13 00:00:00.000 | 31 | 107 | 28.971962617 | 28.97% |
16 | 2024-12-14 00:00:00.000 | 16 | 107 | 14.953271028 | 14.95% |
17 | 2024-12-15 00:00:00.000 | 16 | 107 | 14.953271028 | 14.95% |
18 | 2024-12-16 00:00:00.000 | 43 | 448 | 9.598214286 | 9.6% |
19 | 2024-12-17 00:00:00.000 | 49 | 448 | 10.9375 | 10.94% |
20 | 2024-12-18 00:00:00.000 | 52 | 448 | 11.607142857 | 11.61% |
i_danSwellChain: Daily Stickiness Ratio
Updated 2025-04-02
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
›
⌄
WITH user_activity AS (
SELECT
from_address
, DATE_TRUNC('day', block_timestamp) AS activity_day
, DATE_TRUNC('week', block_timestamp) AS activity_week
FROM swell.core.fact_transactions
WHERE from_address != '0xdeaddeaddeaddeaddeaddeaddeaddeaddead0001'
AND from_address != '0x339d413ccefd986b1b3647a9cfa9cbbe70a30749'
),
dau AS (
SELECT
activity_day
, COUNT(DISTINCT from_address) AS daily_active_users
FROM user_activity
GROUP BY 1
),
wau AS (
SELECT
activity_week
, COUNT(DISTINCT from_address) AS weekly_active_users
FROM user_activity
GROUP BY 1
)
SELECT
d.activity_day AS "Date"
, d.daily_active_users AS "Daily Users"
, w.weekly_active_users AS "Weekly Users"
, (d.daily_active_users::float / w.weekly_active_users) * 100 AS DAU_WAU
, ROUND(DAU_WAU, 2)||'%' AS "DAU - WAU Rate (%)"
FROM dau d
LEFT JOIN wau w
ON DATE_TRUNC('week', d.activity_day) = w.activity_week
ORDER BY 1
Last run: about 1 month ago
...
125
7KB
1s