Week | Churned Users | Total Users | |
---|---|---|---|
1 | 2024-12-02 00:00:00.000 | 114 | 256 |
2 | 2024-12-09 00:00:00.000 | 40 | 109 |
3 | 2024-12-16 00:00:00.000 | 106 | 450 |
4 | 2024-12-23 00:00:00.000 | 249 | 868 |
5 | 2024-12-30 00:00:00.000 | 377 | 1235 |
6 | 2025-01-06 00:00:00.000 | 603 | 1465 |
7 | 2025-01-13 00:00:00.000 | 345 | 1465 |
8 | 2025-01-20 00:00:00.000 | 4129 | 6164 |
9 | 2025-01-27 00:00:00.000 | 1410 | 2445 |
10 | 2025-02-03 00:00:00.000 | 899 | 1753 |
11 | 2025-02-10 00:00:00.000 | 1141 | 1950 |
12 | 2025-02-17 00:00:00.000 | 832 | 1515 |
13 | 2025-02-24 00:00:00.000 | 459 | 1062 |
14 | 2025-03-03 00:00:00.000 | 503 | 1082 |
15 | 2025-03-10 00:00:00.000 | 471 | 1003 |
16 | 2025-03-17 00:00:00.000 | 624 | 1094 |
i_danSwellChain: Churn Rate
Updated 2025-04-02
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
›
⌄
WITH last_activity AS (
SELECT
from_address
, MAX(DATE_TRUNC('week', block_timestamp)) AS last_active_week
FROM swell.core.fact_transactions
GROUP BY 1
)
SELECT
last_active_week AS "Week"
, COUNT(DISTINCT l.from_address) AS "Churned Users"
, COUNT(DISTINCT t.from_address) AS "Total Users"
FROM last_activity l
JOIN swell.core.fact_transactions t ON date_trunc('week', t.block_timestamp) = l.last_active_week
WHERE last_active_week < DATE_TRUNC('week', CURRENT_DATE) - INTERVAL '1 week'
GROUP BY 1
ORDER BY 1
Last run: about 1 month ago
16
591B
40s